
Ad Hoc Grid Security Infrastructure
Kaizar Amin∗†, Gregor von Laszewski∗‡§, Mikhail Sosonkin¶,

Armin R. Mikler†, Mihael Hategan‡
∗Mathematics and Computer Science Division, Argonne National Laboratory, U.S.A.
†Computer Science and Engineering Department, University of North Texas, U.S.A.

‡Computation Institute, University of Chicago, U.S.A.
¶Computer Science Department, Polytechnic University, U.S.A.

§Corresponding author: gregor@mcs.anl.gov

http://www.mcs.anl.gov/˜gregor/papers/vonLaszewski-adhoc-security.pdf

Abstract— This paper describes an ad hoc Grid security
infrastructure developed as a part of the Java CoG Kit
project. It supports several requirements specific to the
sporadic nature of ad hoc Grids. It focuses on identity
management, identity verification, and authorization control
in spontaneous Grid collaborations without pre-established
policies or environments. It adopts established community
standards, with modifications where needed. This paper
also discusses the integration of the ad hoc Grid security
infrastructure in an ad hoc Grid implementation. The
implementation supports secure collaboration in ad hoc
Grids using commodity technologies such as the Java CoG
Kit, JXTA, GSI, and XACML.

I. I NTRODUCTION

The need forsporadic or ad hoc Gridshas its ori-
gin in the development of an infrastructure supporting
scientific experiment management for Grand Challenge
Applications [1], [2]. As part of this development, von
Laszewski identified the important differences between
compute center maintained Grids [3] and Grids that are
maintained based on sporadic interactions and use patterns
[4] in an ad hoc fashion. This includes spontaneous,
and time limited exposure of the infrastructure and the
integration, deployment [5], administration [6], and usage
of resources (including the users) and services as part
of an experiment management infrastructure. We termed
such an infrastructuresporadic Grid[4] or ad hoc Grid.

An ad hoc Grid allows Grid entities, also referred to as
ad hoc Grid peers, to spontaneously establish an ad hoc
relationship, join existing Grids, dynamically contribute
services to the Grid, and invoke services offered by other
peers in the Grid. Ad hoc Grids facilitate interaction in
an autonomous fashion without requiring pre-configured
environments or management policies. They support a
large class of applications that cannot be conventionally
supported by traditional Grid environments. These ap-
plications include market-oriented applications, transient
collaborations, sporadic interactions, and other commu-
nity applications that require on-the-fly Grid establish-
ment and deployment [7]. Ongoing research within the
Java CoG Kit project [8] is focusing on realizing such
dynamic, autonomous, self-adaptive, self-managing, and
community-controlled Grid infrastructure.

Tightly controlled and systematically enforced security
frameworks [9] have encouraged the adoption of Grids by

the scientific and commercial communities. In traditional
Grid environments, every entity has a pre-established trust
relationship with a central administrative authority. For
every entity, this authority assigns a unique Grid identity
and a set of authorization privileges within the scope of
the established trust. Within the realm of these assigned
identities and privileges, Grid entities can seamlessly col-
laborate and interact with each other. These interactions
are impartially monitored by the administrators. In the
event of policy violations, the administrators terminate
their trust relationship with the violating entity and revoke
its Grid usage privileges.

Such security patterns cannot be applied in the context
of ad hoc Grids. Ad hoc Grids facilitate structural inde-
pendence, whereby they do not critically rely on the exis-
tence of any particular entity. The unavailability of a Grid
peer may result in the unavailability of services hosted on
that peer. However, it does not result in a non functional
Grid. For example, in traditional Grids, the unavailability
of the registration service results in a non functional Grid
because other Grid entities cannot discover the existing
services. Although redundancy and replication of critical
services help in improving its fault tolerance, they merely
provide a partial solution, without completely eliminating
the dependence on external entities. In ad hoc Grids, no
critical service is hosted on a single resource or a group of
resources. Instead,all members of the ad hoc Grid equally
participate in the realization of critical Grid services,
enabling them to be independent of the availability of a
specific peer or group of peers. Ad hoc Grids also support
control independence. Control independence in an ad hoc
Grids reflects its ability to manage its security and usage
policies in the absence of a central controller. Because of
its structural independence, peers in an ad hoc Grid cannot
rely on external support for crucial security enforcement
services. Thus, the centralized administrative services in
traditional Grids that are responsible for membership,
access, and usage control on Grid resources are segregated
to be hosted on every participating peer. Every entity in an
ad hoc Grid is responsible for maintaining and securing
itself. Depending on their individual policies, participants
may allow universal access or restrict access to a few
trusted peers. Nevertheless, without an integrated ad hoc
Grid security infrastructure that offers the appropriate

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-adhoc-security.pdf


tools and security semantics, these independent security
policies can lead to either major security compromises or
complete non interaction between ad hoc Grid peers.

Motivated by the need to support structure indepen-
dence and control independence in ad hoc Grids without
any compromise in security, we have designed an ad
hoc Grid security infrastructure (AGSI) within the Java
CoG Kit project. The rest of this paper is organized
as follows. SectionII gives an overview of the au-
thentication subsystem of AGSI that enables peers to
establish and verify Grid identities. SectionIII discusses
the authorization subsystem of AGSI that allows peers to
autonomously formulate and enforce individual security
policies. SectionIV discusses the integration of AGSI
in a prototype ad hoc Grid implementation. SectionV
describes several community-based security frameworks
discussed in literature. SectionVI summarizes this paper.

II. T HE AUTHENTICATION SUBSYSTEM

The authentication subsystem in AGSI offers the se-
mantics necessary to establish, maintain, and verify peer
identities in an ad hoc Grid. The authentication subsystem
of AGSI is reusing concepts found in the Grid Security
Infrastructure (GSI) [10]. However, it includes several
modifications.

Every peer in an ad hoc Grid is uniquely identified by
an identity. Following the GSI model, a peer identity is
represented as an X.509 public key certificate [11]. There-
fore, every peer identity is approved (digitally signed)
by a certificate authority (CA). Identities can be signed
by commercially available CAs [12] or by community-
established CAs [13]. Additionally, a peer may choose to
act as a CA generating identities for other peers. A peer is
at the liberty to establish multiple identities generated by
different CAs. It is free to choose any CA to establish its
identity. AGSI does not enforce the usage of any particular
CA, nor does it give one CA preference over another.

Independent of the CAs chosen to establish its own
identities, every peer has a set of trusted CAs. A CA
trusted by a peer implies that the peer will recognize
and honor all identities generated by that CA. LetIx =⋃n

k=1 ick
x be a set of identities established by a peerx,

whereick
x denotes the peer identityix issued by the CA

ck. Let Cx =
⋃m

j=1 cj be the set of CAs trusted by peerx.
A mutually authenticated transaction is permitted between
ad hoc peersx andy ⇐⇒ ∃ica

x ∈ Ix and∃icb
y ∈ Iy such

that ca ∈ Cy andcb ∈ Cx.
Peer identities can be maintained within the local file

system. Private keys associated with the X.509 public
key certificates are protected on the local file system by
encrypting them with a pass-phrase. However, it would
be impractical for peers to explicitly provide the pass-
phrase decrypting the private key for every Grid trans-
action. Therefore, to support single-sign-on solutions, we
use GSI-based X.509 proxy certificates. Like public key
certificates, proxy certificates bind a unique public key to
a subject name. Unlike public key certificates, however,
the issuer of proxy certificate is identified by a public key

certificate or another proxy certificate rather than a CA
certificate. Hence, proxy certificates can be created on the
fly without requiring any intervention from conventional
CAs. Using its private key, the peer generates a proxy
certificate with a limited lifetime. The newly generated
proxy certificate and its private key are maintained within
the local file system. For all subsequent Grid interactions,
the peer authenticates itself using the proxy certificate
rather than its public key certificate. Since the private
key associated with the proxy certificate is protected by
the local file system permissions rather than encrypting
it, no manual response is required by the peer; hence,
single-sign-on. Further, since the proxy certificate has
a short lifetime, it is typically permissible to protect
it in a less secure manner than the long-term private
key. Although GSI proposes and actively uses proxy
certificates for dynamic credential delegation [14], AGSI
does not permit credential delegation. In the absence of
a pre-established trust relationship, it is impractical and
insecure for any peer to delegate a subset of its credentials
to any other peer in the ad hoc Grid. Therefore, AGSI
uses X.509 proxy certificates for the sole purpose of
repeated authentication without any support for dynamic
delegation.

Fig. 1. High-level SimplerCA design

As discussed earlier, every peer in an ad hoc Grid can
become a CA generating identities for other peers. There
can be several motivations for an ad hoc Grid peer to gen-
erate identities for other peers. The certificate-signing peer
can be a commercial CA offering its certificate-signing
services within the Grid. Likewise, a service-providing
peer may trust only peer identities generated by itself. CA
management is a nontrivial task without user-friendly CA
management tools. To assist ad hoc Grid peers with the
complex task of issuing and maintaining Grid credentials,
AGSI offers a personal certificate management system,
referred to as theSimplerCAsystem [6].

Figure 1 shows the high-level design of the system



Fig. 2. Policy-based service authorization is AGSI

and depicts interactions between the certificate requesting
peer and the certificate issuing peer. A requesting peer
requests a certificate from an issuer using the SimplerCA
client interface. The client interface contacts the certificate
server and retrieves all the attributes required for the
certificate. These attributes are defined by the issuer based
on its internal CA policy. Once the requester completes
the required information and approves its submission,
the client interface forwards the information to the client
certificate manager. The client certificate manager saves
the information in a secure local database and generates
the certificate request. The client certificate manager then
uses a connection to the CA server to send the certificate
request to the issuer. The CA server accepts the request
and saves it in the server database. The certificate-issuing
peer can evaluate the certificate request using the Sim-
plerCA server interface. At this point the issuer can either
sign the request and generate a certificate for the peer
requesting it or deny it. If the certificate issuer signs the
request, the certificate is saved in the server database.
The certificate issuer might notify the requester that the
certificate is ready through some other agreed-on protocol
(such as email), or the requester may periodically poll the
issuer for a signed certificate.

III. T HE AUTHORIZATION SUBSYSTEM

Although the authentication subsystem provides a
framework to establish, maintain, and verify peer iden-
tities, it does not associate trust relationships with these
identities. In other words, an authenticated peer does not
necessarily imply a trustworthy peer. Thus, the authoriza-
tion subsystem of AGSI complements its authentication
system by offering an autonomous framework for peers
to control their Grid environments. Rather than a single
Grid authorization policy, AGSI supports a distributed and
fragmented Grid policy whereby each policy fragment
is systematically controlled and enforced by different
peers participating in the ad hoc Grid. Several popular
traditional Grid frameworks [9] offer tightly bound static
mapping between Grid users and their privileges. In such
systems, Grid administrators evaluate every individual

Grid user and accordingly map it to a specific set of
privileges. Explicit evaluation and configuration of autho-
rization privileges for every participating entity results in
an impractical and non-scalable solution in ad hoc Grids
with sporadic collaborations and continuously changing
members. Therefore, the authorization subsystem offered
in AGSI supports a scalable and maintainable policy
formulation in ad hoc Grids that is agnostic to the constant
flux in Grid environments.

Listing 1. Sample XACML policy fragment showcasing the rule
elements of a policy
<?xml version ="1.0" encoding="UTF-8"?>
<Policy
xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="AdHocGridPolicy"
RuleCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-overrides">

<Description>
This policy applies to all users of the ad hoc Grid trying to
access the service named http://myExecuitonService.cogkit.org.
It allows access to all methods of the protected service by the
members of the Java CoG Kit group. All other users are denied any
access.

</Description>

<Target>
<Subjects><AnySubject/></Subjects>
<Resources>

<ResourceMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">

http://myExecutionService.cogkit.org/
</AttributeValue>
<ResourceAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resources>
<Actions><AnyAction/></Actions>

</Target>

<Rule RuleId="CoGKitRule" Effect="Permit">
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="group"
Issuer="admin@adhoc.cogkit.org"/>

</Apply>
<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
Java CoG Kit Group

</AttributeValue>
</Condition>

</Rule>

<! -- Other rules can come here -- >

<Rule RuleId="FinalRule" Effect="Deny"/>
</Policy>

The most critical element of an authorization system
is its policy language. AGSI adopts the standards-based
XACML (eXtensible Access Control Markup Language)
authorization and access control policy language [15].
XACML policies allow users to conveniently express
access control criteria and requirements with a general-
purpose access control policy language written in XML.
XACML offers AGSI a simplified, yet comprehensive,
environment to autonomously express and enforce dis-
tributed authorization policies independent of any external
support.

Figure2 describes a typical setup enforcing authoriza-
tion policies in the pull sequence [16]. Every peer contains
a policy enforcement point (PEP) protecting a set of
contributed services. All invocations and access requests
to the services are intercepted by the PEP. Based on the
service usage request and accompanying peer credentials,
the PEP, formulates arequest contextand passes it to the
policy decision point (PDP). The PDP inspects the request



and identifies a relevant policy corresponding to the
target service. Based on the data provided in the request
and the rules specified in the policy, the PDP makes a
decision whether topermit or denythe requested access.
The evaluated decision is conveyed to the PEP which
then enforces the access control. Although the XACML
specification permits the PEP and PDP to be hosted on
different machines, AGSI hosts both components on the
same ad hoc Grid peer.

XACML is a comprehensive and feature-rich language.
Although a complete description of XACML is beyond
the scope of this paper, we describe some of the basic
elements used in AGSI. An XACML policy, as used in
AGSI, contains a rootpolicy element. Every XACML
policy has an associatedtarget element and a set ofrule
elements. The target elements assists the PDP in selecting
the most appropriate policy for the given request context.
The target element encapsulates thesubject, resource,
and action elements. The subject refers to the identity
of the service requester. It allows the PDP to select a
policy based on various attributes associated with the
requesting subject. The resource represents the target
ad hoc Grid service. It allows the PDP to conveniently
map an authorization policy with a particular service.
The action of a policy target specifies the methods of
a contributed service that need to be enforced by the
given policy. If all the conditions of the target element
are satisfied, the PDP utilizes that policy for its decision.

Once the PDP maps a request context to a particular
policy, it evaluates all the rules associated with that policy.
The policy can have any number of rules that contain the
core logic of the XACML policy. The rule element rep-
resents a Boolean condition. It also has aneffectattribute
(permit, deny, indeterminate, or not applicable) that is
returned when the condition associated with rule evaluates
to true. Further, XACML specification defines a suite of
rule combining algorithms that allow the PDP to combine
the effects of multiple rules within a policy into a single
effect corresponding to that policy. Several rules such as
deny overrides, permit overrides, first applicable, and only
one applicable are supported. Attribute values within the
policy logic are resolved by using theAttributeDesignator
and AttributeSelectorelements. The AttributeDesignator
references values by the attribute identifier, data type,
and other metadata, whereas the AttributeSelector element
uses XPath queries to resolve attribute values. Listing
1 shows a sample XACML policy fragment specifying
that the given policy be enforced forall users trying to
accessany method of theMyExecutionService. It permits
all the members of the Java CoG Kit Grid to access
the MyExecutionService. All other service requests are
denied. For a detailed understanding of all the elements
supported by XACML and their corresponding semantics,
the reader is directed to [17].

IV. I MPLEMENTATION

To validate our model for AGSI and to verify its
utility and flexibility for ad hoc Grids, we have integrated

AGSI in a prototype ad hoc Grid implementation. The
implementation allows participating peers to establish
spontaneous collaborations. Peers can create new ad hoc
Grid communities, discover existing communities, join
discovered communities, and communicate with peers
in a community. Our implementation operates in a dis-
tributed environment independent of any particular Grid
entity (structure independence). We have implemented
the community management framework using the JXTA
technology [18]. JXTA is a collection of open peer-to-
peer protocols and services that allow any device with a
“network heartbeat” to communicate and collaborate with
other Jxta peers autonomously. It provides a mechanism
to create virtual ad hoc collaborations without exposing
any of the underlying peer-to-peer protocol complexities.
It enables the formation of a self-organizing super-peer-
based overlay network on the Internet. Figure3 shows
the user interface for the ad hoc Grid creation, discovery,
presence management, and group communication.

The ad hoc Grid architecture assumes a service-oriented
environment, where resources are contributed and con-
sumed as services. We do not impose any restrictions on
the nature of contributed services. These can represent
a single compute or data sources, or they can represent
the entire computational cluster or data storage system.
Additionally, these contributed services could be poten-
tially shared with existing static Grids or other community
applications.

Peers participating in an ad hoc Grid can contribute
services to be invoked by other members of the com-
munity. These services are advertised by providers in
the form of service advertisements containing important
details such as the peer identity, service name, service
description, service contact, and qualitative attributes of
the service expressed as ClassAd [19] constructs. Figure4
shows the user interface to publish and discover service
advertisements.

Fig. 5. The Java CoG Kit Grid environment setup component



Fig. 3. User interfaces for ad hoc Grid creation, discovery, presence management, and Grid-wide communication

Fig. 4. User interfaces for publishing service advertisements and discovering published advertisements

Figure 5 shows the user interface for the Java CoG
Kit setup component that allows ad hoc Grid peers to
initialize their Grid environments, including the establish-
ment of the trusted CA certificates. The authentication

libraries utilized by AGSI are supplied by thejglobus
module of the Java CoG Kit. The jglobus libraries are
extensively used by the Grid community to facilitate
its GSI requirements. The Java CoG Kit GSI module



Fig. 6. SimplerCA interface for defining certificate attributes

Fig. 7. SimplerCA interface for approving certificate requests

is also internally used and distributed with the Globus
toolkit versions3 and4. The Java CoG Kit (cog-jglobus)
provides a standards-based solution to the mutual authen-
tication and single-sign-on problems. Further, to facilitate
the creation and distribution of dynamic Grid identities,
we have adopted the SimplerCA certificate management
system from the Java CoG Kit [6]. Figure6 shows the
interface allowing CA peers to establish the necessary
attributes required for identity generation. Figure7 shows
a snapshot of the outstanding certificate requests pending
approval from the CA. Subject to its policy, the peer can
approve or reject these requests, appropriately notifying
the requester. Figure8 shows the client-side management
of CAs and their generated identities. It allows clients
to add new CAs, send certificate requests, and generate
proxy credentials for accepted certificates.

As discussed earlier, access to a contributed service is
controlled by XACML authorization policies. Figure9
shows the user interface allowing peers to express their

Fig. 8. SimplerCA client interface for requesting ad hoc Grid
certificates

Fig. 9. User interface allowing the peer to express authorization policies

authorization policies in XACML syntax. We acknowl-
edge the fact that expressing XACML policies in textual
format is cumbersome and not user-friendly. Ongoing
activities are focusing on creating a flexible and user-
friendly tool allowing peers to configure their policies
with a graphical interface. The PEP and the PDP in our
prototype is implemented using the open-source Java im-
plementation of the XACML specification, called as sunx-
acml [20]. Figure10 shows the user interface enabling
peers to invoke access controlled community services.
Access will be successful only if the requesting peer
satisfies the authorization policy of the remote service.

V. RELATED WORK

Extensive research has been conducted by the Grid
community on community-based security infrastructures.



Fig. 10. User interface for submitting Grid tasks to access controlled
community services

A majority of the proposed solutions focus on decoupling
the Grid resource administration from community admin-
istration. Very few security frameworks discussed in liter-
ature focus on structure- and control-independent security
solutions, the primary focus of AGSI. In this section we
discuss some of the relevant security frameworks that seek
to support community-controlled solutions.

The Community Authorization Service (CAS) [21]
framework from the Globus Alliance [9] builds on the
GSI-based authentication system to support fine-grained
group authorization. It segregates the administration of
resources from the administration of Grid communities.
Every Grid community instantiates a CAS server repre-
senting that community and controlled by a community
administrator. This administrator acquires coarse-grained
authorization privileges from the resource administrator
on behalf of the community. Within the scope of these
privileges, the community administrator manages fine-
grained authorization permissions among the community
users based on the community-specific trust relationships.
Using the CAS server, community members obtain their
individual community privileges in the form of limited
proxy credentials. With these restricted credentials, the
community members can access a subset of resource
functionality available to the community.

A community-based authorization framework can also
be formed by using the Virtual Organization Membership
Service (VOMS) [22]. Every virtual organization (VO)
has an associated VOMS server and a VOMS adminis-
trator. Resource administrators grant bulk privileges to
the VO at a coarse level. These privileges are distributed
to the community members via the VOMS server using
fine-grained trust relationships. The VOMS-based system
differs from the CAS framework in its representation
of the community privileges. While the CAS framework

assigns community privileges as restricted X.509 proxy
certificates, the VOMS-based system assigns them as
privilege attribute certificates.

Although CAS and the VOMS-based system enable
the Grid communities to manage their own fine-grained
trust relationships, they differ from AGSI in their strong
reliance on the CAS and VOMS servers, respectively. Fur-
ther, their dependence on a pre-established community ad-
ministrator prohibits them from supporting the structure-
and control-independent requirements of ad hoc Grids.
The requirements imposed by these systems in terms
of its community-owned static-infrastructure components
cannot be satisfied by ad hoc Grids.

The Akenti [23] system enforces access control on
resources based on policies expressed by multiple author-
itative entities (stakeholders). Multiple stakeholders for
an Akenti-enforced resource can impose access control
requirements independent of other stakeholders. Resource
access is granted to users based on their identity cre-
dentials and the dynamically aggregated authorization
policies from all the involved stakeholders.

The PRIMA [24] privilege management framework is
conceptually similar to Akenti. It allows multiple entities
that are authoritative for a resource to delegate access
to resources for which they are authoritative. Users can
possess and further delegate to other users fine-grained
privileges to resources for which they are authoritative.
Resource privileges are expressed and distributed as priv-
ilege attributes. Therefore, access to a resource enforced
by PRIMA is based on the aggregate set of privilege
attributes presented by the user.

The Akenti and PRIMA systems offer excellent de-
centralized solutions to distributed authorization schemes
without requiring any community-owned static infrastruc-
ture. Nevertheless, they are fundamentally based on the
assumptions of a hierarchical and multi-entity resource
authoritative system, where a resource is controlled by
multiple entities. While this assumption is valid for tradi-
tional Grid systems, it does not hold true for ad hoc Grids.
In the ad hoc Grid model, every peer bears the exclusive
responsibility for and control of the services contributed
by it. In the absence of such multiple-authoritative re-
quirements, the Akenti and PRIMA systems result in a
heavy weight solution trying to solve problems that do not
even occur in ad hoc Grids. The authorization subsystem
offered in this paper is a light weight solution offering a
subset of functionalities available in Akenti and PRIMA,
specifically targeting the requirements and characteristics
of ad hoc Grids.

VI. SUMMARY

Security is one of the pillars of any Grid environment.
This paper describes a security model capable of support-
ing the requirements imposed by ad hoc Grids: structure
independence and control independence. We refer to the
security framework described in this paper as the ad hoc
Grid security infrastructure (AGSI). The authentication
subsystem of AGSI is responsible for creating, managing,



and verifying Grid identities in ad hoc Grids. It adopts the
GSI model for mutual authentication and single sign-on.
Unlike GSI, however, AGSI does not support credential
delegation. AGSI also supports dynamic identity genera-
tion using the SimplerCA certificate management system.
The authorization subsystem of AGSI is based on the
enforcement of standards-based XACML access control
policies. These policies allow every peer to autonomously
configure and enforce access to services offered by it.
To validate and verify our AGSI model, we integrated it
with a prototype ad hoc Grid implementation. Our imple-
mentation allows ad hoc Grid peers to create, discover,
and participate in spontaneous Grid collaborations. Peers
can contribute autonomously protected services to the
community. Grid identities are dynamically established
by the peers allowing authenticated service interaction.
Access to services are permitted only if the requester
satisfies the authorization policies imposed by the service
provider. Ongoing research activities within the Java CoG
Kit project is focusing on integrating an incremental
reputation system with AGSI.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Infor-
mation, and Computational Science Division subprogram
of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under
Contract W-31-109-Eng-38. DARPA, DOE, and NSF sup-
port Globus Project research and development. The Java
CoG Kit Project is supported by DOE MICS, and NSF
Alliance.

REFERENCES

[1] G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, J. Bresnahan,
C. Kesselman, M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman,
and I. McNulty, “Real-Time Analysis, Visualization, and Steering
of Microtomography Experiments at Photon Sources,” in
Ninth SIAM Conference on Parallel Processing for Scientific
Computing, San Antonio, TX, 22-24 Mar. 1999.http://www.mcs.
anl.gov/∼gregor/papers/vonLaszewski--siamCmt99.pdf

[2] G. von Laszewski, M. Westbrook, I. Foster, E. Westbrook,
and C. Barnes, “Using Computational Grid Capabilities to
Enhance the Ability of an X-Ray Source for Structural
Biology,” Cluster Computing, vol. 3, no. 3, pp. 187–199, 2000.
http://www.mcs.anl.gov/∼gregor/papers/vonLaszewski--dtrek.pdf

[3] G. von Laszewski and P. Wagstrom,Tools and Environments
for Parallel and Distributed Computing, ser. Parallel and
Distributed Computing. Wiley, 2004, ch. Gestalt of the
Grid, pp. 149–187. http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--gestalt.pdf

[4] G. von Laszewski, J. Gawor, C. J. Peña, and I. Foster,
“InfoGram: A Peer-to-Peer Information and Job Submission
Service,” in Proceedings of the 11th Symposium on High
Performance Distributed Computing, Edinbrough, U.K., 24-
26 July 2002, pp. 333–342.http://www.mcs.anl.gov/∼gregor/
papers/vonLaszewski--infogram.pdf

[5] G. von Laszewski, E. Blau, M. Bletzinger, J. Gawor, P. Lane,
S. Martin, and M. Russell, “Software, Component, and Service
Deployment in Computational Grids,” inIFIP/ACM Working
Conference on Component Deployment, ser. Lecture Notes
in Computer Science, J. Bishop, Ed., vol. 2370. Berlin,
Germany: Springer, 20-21 June 2002, pp. 244–256.http:
//www.mcs.anl.gov/∼gregor/papers/vonLaszewski--deploy-32.pdf

[6] G. von Laszewski and M. Sosonkin, “A Grid Certificate Authority
for Community and Ad-hoc Grids,” in7th International Workshop
on Java for Parallel and Distributed Computing, published in the
Proceedings of the 19th International Parallel and Distributed
Processing Symposium. Denver, CO: IEEE, 4-8 Apr. 2005.http://
www.mcs.anl.gov/∼gregor/papers/vonLaszewski-ca-workshop.pdf

[7] K. Amin, G. von Laszewski, and A. R. Mikler, “Grid
Computing for the Masses: An Overview,” inGrid and
Cooperative Computing (GCC2003), Shanghai, China, December
2003, pp. 464–473. http://www.mcs.anl.gov/∼gregor/papers/
vonLaszewski--masses-gcc03.pdf

[8] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java
Commodity Grid Kit,” Concurrency and Computation: Practice
and Experience, vol. 13, no. 8-9, pp. 643–662, 2001.http://www.
mcs.anl.gov/∼gregor/papers/vonLaszewski--cog-cpe-final.pdf

[9] “The Globus Alliance,” Web Page.http://www.globus.org
[10] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security

Architecture for Computational Grids,” in5th ACM Conference on
Computer and Communications Security. ACM Press, Nov. 2-5
1998, pp. 83–92.ftp://ftp.globus.org/pub/globus/papers/security.
pdf

[11] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 3280, April 2002.

[12] “SSL Certificates from VeriSign, Inc.”http://www.verisign.com/
products-services/security-services/ssl/index.html

[13] “DOEGrids Certificate Service,” Web Page.http://www.doegrids.
org/

[14] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman,
S. Tuecke, J. Gawor, S. Meder, and F. Siebenlist, “X.509 Proxy
Certificates for Dynamic Delegation,” inThird Annual PKI R &
D Workshop, 2004.

[15] “OASIS eXtensible Access Control Markup Language (XACML)
TC.” http://www.oasis-open.org/committees/xacml

[16] R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for
Policy-based Admission Control,” RFC 2753, January 2000.

[17] S. Godik and T. Moses, “eXtensible Access Control Markup
Language (XACML) Version 1.1,” OASIS Standard, August 2003.

[18] “Project JXTA,” Web Page.http://www.jxta.org/
[19] R. Raman, “Matchmaking Frameworks for Distributed Resource

Management,” Ph.D. dissertation, The University of Wisconsin-
Madison, 2000.

[20] “Sun’s XACML Implementation.”http://sunxacml.sourceforge.net/
[21] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke,

“A Community Authorization Service for Group Collaboration,”
in IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks, Monterey CA, USA, 5-7 June 2002.

[22] “VOMS Architecture v1.1,” Web Page, May 2002.http:
//grid-auth.infn.it/docs/VOMS-v11.pdf

[23] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson,
and A. Essiari, “Certificate-based Access Control for Widely
Distributed Resources,” 1999.

[24] M. Lorch and D. G. Kafura, “The PRIMA Grid Authorization
System,”Journal of Grid Computing, vol. 2, no. 3, pp. 279–298,
2004.

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--siamCmt99.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--siamCmt99.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--dtrek.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--infogram.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--infogram.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--deploy-32.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--deploy-32.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-ca-workshop.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-ca-workshop.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--masses-gcc03.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--masses-gcc03.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf
http://www.globus.org
ftp://ftp.globus.org/pub/globus/papers/security.pdf
ftp://ftp.globus.org/pub/globus/papers/security.pdf
http://www.verisign.com/products-services/security-services/ssl/index.html
http://www.verisign.com/products-services/security-services/ssl/index.html
http://www.doegrids.org/
http://www.doegrids.org/
http://www.oasis-open.org/committees/xacml
http://www.jxta.org/
http://sunxacml.sourceforge.net/
http://grid-auth.infn.it/docs/VOMS-v1_1.pdf
http://grid-auth.infn.it/docs/VOMS-v1_1.pdf

	Introduction
	The Authentication Subsystem
	The Authorization Subsystem
	Implementation
	Related Work
	Summary
	References

